Respuesta :

Answer:

[tex]z = \frac{8}{5}[/tex]

Step-by-step explanation:

Calculate for the value of [tex]z[/tex] :

[tex]2(4z - 1) = 3(z + 2)[/tex]

-Use Distributive Property on both left and right:

[tex]2(4z - 1) = 3(z + 2)[/tex]

[tex]8z - 2 = 3z + 6[/tex]

-Take [tex]3z[/tex] and subtract [tex]8z[/tex] :

[tex]8z - 3z - 2 = 3z - 3z + 6[/tex]

[tex]5z - 2 = 6[/tex]

-Add [tex]2[/tex] to both sides:

[tex]5z - 2 + 2 = 6 + 2[/tex]

[tex]5z = 8[/tex]

-Take [tex]5z[/tex] and divide on both sides:

[tex]\frac{5z}{5} = \frac{8}{5}[/tex]

[tex]z = \frac{8}{5}[/tex]

Therefore, the value of [tex]z[/tex] is [tex]\frac{8}{5}[/tex].

The solution to the given equation is [tex]z = \frac{8}{5} \ or \ 1\frac{3}{5}[/tex]

The given equation is 2( 4z - 1) = 3(z+2).

To solve the given equation means we should determine the value of the variable z.

To solve this, we will first clear the brackets

[tex]2(4z - 1) = 3(z+2)[/tex]

Clearing the brackets

[tex]8z - 2 = 3z + 6[/tex]

Now, collect like terms

[tex]8z - 3z = 6 + 2[/tex]

Then,

[tex]5z = 8[/tex]

Now divide both sides by 5

[tex]\frac{5z}{5} = \frac{8}{5}[/tex]

∴ [tex]z = \frac{8}{5} \ or \ 1\frac{3}{5}[/tex]

Hence, the solution to the given equation is [tex]z = \frac{8}{5} \ or \ 1\frac{3}{5}[/tex]

Learn more here: https://brainly.com/question/24546213