Respuesta :
Answer:
[tex]z = \frac{8}{5}[/tex]
Step-by-step explanation:
Calculate for the value of [tex]z[/tex] :
[tex]2(4z - 1) = 3(z + 2)[/tex]
-Use Distributive Property on both left and right:
[tex]2(4z - 1) = 3(z + 2)[/tex]
[tex]8z - 2 = 3z + 6[/tex]
-Take [tex]3z[/tex] and subtract [tex]8z[/tex] :
[tex]8z - 3z - 2 = 3z - 3z + 6[/tex]
[tex]5z - 2 = 6[/tex]
-Add [tex]2[/tex] to both sides:
[tex]5z - 2 + 2 = 6 + 2[/tex]
[tex]5z = 8[/tex]
-Take [tex]5z[/tex] and divide on both sides:
[tex]\frac{5z}{5} = \frac{8}{5}[/tex]
[tex]z = \frac{8}{5}[/tex]
Therefore, the value of [tex]z[/tex] is [tex]\frac{8}{5}[/tex].
The solution to the given equation is [tex]z = \frac{8}{5} \ or \ 1\frac{3}{5}[/tex]
The given equation is 2( 4z - 1) = 3(z+2).
To solve the given equation means we should determine the value of the variable z.
To solve this, we will first clear the brackets
[tex]2(4z - 1) = 3(z+2)[/tex]
Clearing the brackets
[tex]8z - 2 = 3z + 6[/tex]
Now, collect like terms
[tex]8z - 3z = 6 + 2[/tex]
Then,
[tex]5z = 8[/tex]
Now divide both sides by 5
[tex]\frac{5z}{5} = \frac{8}{5}[/tex]
∴ [tex]z = \frac{8}{5} \ or \ 1\frac{3}{5}[/tex]
Hence, the solution to the given equation is [tex]z = \frac{8}{5} \ or \ 1\frac{3}{5}[/tex]
Learn more here: https://brainly.com/question/24546213