Answer:
[tex]x = 180[/tex]
Step-by-step explanation:
Solve the value of [tex]x[/tex] :
[tex]0.25x + 7 = \frac{1}{3}x - 8[/tex]
-Combine [tex]\frac{1}{3}x[/tex] and [tex]0.25x[/tex] by subtracting [tex]0.25x[/tex] by [tex]\frac{1}{3}x[/tex] :
[tex]0.25x - \frac{1}{3}x + 7 = \frac{1}{3}x - \frac{1}{3}x - 8[/tex]
[tex]-\frac{1}{12}x + 7 = -8[/tex]
-Subtract [tex]7[/tex] on both sides:
[tex]-\frac{1}{12}x + 7 - 7 = -8 - 7[/tex]
[tex]-\frac{1}{12}x = -15[/tex]
-Multiply both sides by [tex]-12[/tex], the reciprocal of [tex]-\frac{1}{12}[/tex] :
[tex]\frac{-\frac{1}{12}x}{-\frac{1}{12}} = \frac{-15}{-\frac{1}{12}}[/tex]
[tex]x = -15 (-12)[/tex]
[tex]x = 180[/tex]
Therefore, the value of [tex]x[/tex] is [tex]180[/tex].