Answer:
a) [tex]V=4.3x10^3mL[/tex]
b) [tex]V=4.3x10^6mm^3[/tex]
c) [tex]\rho=1.5x10^5g/L[/tex]
Explanation:
Hello,
a) In this case, the given height in cm is:
[tex]h=4.5dm*\frac{1m}{10dm}* \frac{100cm}{1m}=45cm[/tex]
And the radius in cm is:
[tex]r=5.50x10^{-5}km*\frac{1000m}{1km}*\frac{100cm}{1m}=5.5cm[/tex]
Thus, the volume in cubic centimeters which is also equal in mL (1cm³=mL) is:
[tex]V=\pi (5.5cm)^2*45cm\\\\V=4.3x10^3cm^3=4.3x10^3mL[/tex]
b) In this case, the given height in mm is:
[tex]h=4.5dm*\frac{1m}{10dm}* \frac{1000mm}{1m}=450mm[/tex]
And the radius in mm is:
[tex]r=5.50x10^{-5}km*\frac{1000m}{1km}*\frac{1000mm}{1m}=55mm[/tex]
Thus, the volume in cubic millimeters is:
[tex]V=\pi (55mm)^2*450mm\\\\V=4.3x10^6mm^3[/tex]
c) Finally, since 1000 mL equal 1 L, the required density in g/L turns out:
[tex]\rho=\frac{m}{V}=\frac{6.54x10^5g}{4.3x10^3mL}*\frac{1000mL}{1L}\\ \\\rho=1.5x10^5g/L[/tex]
Best regards.