21. Given directed line segment WV , find the coordinates of R
such that the ratio of WR to RV is 3:4. Plot point R.

Respuesta :

Answer:

[tex]R\left(\frac {4x_1+3x_2}{7} , \frac {4y_1+3y_2}{7}\right)[/tex]

Step-by-step explanation:

Let the coordinate of the points W, V and R are [tex](x_1,y_1), (x_2,y_2),[/tex] and [tex](x_s,y_s)[/tex]respectively.

The coordinate of the section point, [tex](x_s,y_s),[/tex] which divides the line joining the two points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] in the ration [tex]m:n[/tex] is

[tex]x_s=\frac {nx_1+mx_2}{m+n}[/tex] and

[tex]y_s=\frac {ny_1+my_2}{m+n}[/tex].

The given ration is, [tex]m:n=3:4[/tex]

[tex]R(x_s,y_s)=R\left(\frac {nx_1+mx_2}{m+n} , \frac {ny_1+my_2}{m+n}\right)[/tex]

[tex]=R\left(\frac {4x_1+3x_2}{7} , \frac {4y_1+3y_2}{7}\right)[/tex].

The exact point can be determined by putting the value of the exact coordinate in the above-obtained formula.

Answer:

Step-by-step explanation: