Respuesta :

Answer/Step-by-step explanation:

Given:

m<2 = 98,

m<3 = 23,

m<8 = 70

m<1 + m<2 = 180° (linear pair)

m<1 + 98 = 180 (substitution)

m<1 = 180 - 98 (subtracting 98 from each side of the equation)

m<1 = 82°

m<2 + m<3 + m<7 = 180° (sum of angles in a triangle)

121 + m<7 = 180 (substitution)

m<7 = 180 - 121 (subtracting 121 from each side)

m<7 = 59°

m<4 = m<7 (alternate angles are congruent)

Therefore,

m<4 = 59°

m<5 + m<4 + m<3 = 180° (angles on a straight line)

m<5 + 59 + 23 = 180 (substitution)

m<5 + 82 = 180

m<5 = 180 - 82 (subtracting 82 from each side)

m<5 = 98°

m<6 + m<7 + m<8 = 180° (angles on a straight line)

m<6 + 59 + 70 = 180 (subtitution)

m<6 + 129 = 180

m<6 = 180 - 129 (subtracting 129 from each side)

m<6 = 51°

m<9 + m<8 + m<4 = 180° (sum of triangle)

m<9 + 70 + 59 = 180 (substitution)

m<9 + 129 = 180

m<9 = 180 - 129

m<9 = 51°

m<10 + m<9 = 180° (linear pair)

m<10 + 51 = 180° (substitution)

m<10 = 180 - 51

m<10 = 129°