) consider the initial value problem y′−5y=15t+3et,y(0)=y0 y′−5y=15t+3et,y(0)=y0 (a) solve the initial value problem. (enter y0 for y0y0). y(t)y(t)= equation editorequation editor (b) determine the value of y0y0 that separates solutions that grow positively as t→[infinity]t→[infinity] from those that grow negatively.

Respuesta :

Answer:

a)value attached below

b)Yo = [tex]\frac{-27}{20}[/tex]

Step-by-step explanation:

A) solving initial value problem  

[tex]y' - 5y = 15t + 3e^t[/tex]

y(0) = yo

hence the solution of the initial value problem : y(t)

Y(t) =

Attached below is the detailed solution

B) Yo = [tex]\frac{-27}{20}[/tex]  separates the solutions  as

t →∞

this is because when  y(t) < [tex]\frac{-27}{20} y(t) tends to inifiniy[/tex]

                                     y(t) > [tex]\frac{-27}{20} y(t) tends to inifinity[/tex]

Ver imagen batolisis