Answer:
3657
Step-by-step explanation:
P = 3000, r = 2%, n = 10 years, A =?
By compound interest formula:
[tex]A = P \bigg(1 + \frac{r}{100} \bigg ) ^{n} \\ \\ A = 3000 \bigg(1 + \frac{2}{100} \bigg ) ^{10} \\ \\ A = 3000(1 + 0.02) ^{10} \\ \\ A = 3000(1.02) ^{10} \\ \\ A = 3000 \times 1.21899442 \\ \\ A = 3,656.98326 \\ \\ A \approx 3657 \\ [/tex]