Respuesta :

Answer:

[tex]f^{-1}(4)=3[/tex]              

Step-by-step explanation:

Given : Expression [tex]f(x)=\frac{3x-1}{2}[/tex]

To find : The inverse of the expression ?

Solution :

Expression [tex]f(x)=\frac{3x-1}{2}[/tex]

Let, h(x)=y then   [tex]y=\frac{3x-1}{2}[/tex]

For inverse we replace the value of x and y and find the value of y in terms of x.

Replace the value of x and y,

[tex]x=\frac{3y-1}{2}[/tex]

Cross multiply,

[tex]2x=3y-1[/tex]

Adding 1 both side,

[tex]2x+1=3y[/tex]

Dividing by 3 both side,

[tex]\frac{2x+1}{3}=y[/tex]

The inverse of the f(x) is [tex]f^{-1}(x)=\frac{2x+1}{3}[/tex]

Put x=4,

[tex]f^{-1}(4)=\frac{2(4)+1}{3}[/tex]

[tex]f^{-1}(4)=\frac{8+1}{3}[/tex]

[tex]f^{-1}(4)=\frac{9}{3}[/tex]

[tex]f^{-1}(4)=3[/tex]

Therefore, [tex]f^{-1}(4)=3[/tex]