Respuesta :

6x^3 + 14x^2 - 5x - 3
Do you know of the FOIL method?

Answer:

Option (c) is correct.

The simplified form of  [tex](2x^2+4x-3)(3x+1)[/tex] is [tex]6x^3+14x^2-5x-3[/tex]

Step-by-step explanation:

 Given : [tex](2x^2+4x-3)(3x+1)[/tex]

We have to write the given product in simplified form and choose correct option from the given options.

Consider [tex]\left(2x^2+4x-3\right)\left(3x\:+1\right)[/tex]

Multiply each term of first bracket with each term of second bracket, we get,

[tex]=2x^2\cdot \:3x+2x^2\cdot \:1+4x\cdot \:3x+4x\cdot \:1+\left(-3\right)\cdot \:3x+\left(-3\right)\cdot \:1[/tex]

Apply minus plus rule [tex]+\left(-a\right)=-a[/tex] , we get,

[tex]=2\cdot \:3x^2x+2\cdot \:1\cdot \:x^2+4\cdot \:3xx+4\cdot \:1\cdot \:x-3\cdot \:3x-3\cdot \:1[/tex]

On simplifying, we get,

Adding similar terms,

[tex]4x-9x=-5x\\\\\\ and\ 2x^2+12x^2=14x^2[/tex]

[tex]=6x^3+14x^2-5x-3[/tex]

Thus, option (c) is correct.

The simplified form of  [tex](2x^2+4x-3)(3x+1)[/tex] is [tex]6x^3+14x^2-5x-3[/tex]