ΔABC is similar to ΔPQR. AB⎯⎯⎯⎯⎯ corresponds to PQ⎯⎯⎯⎯⎯, and BC⎯⎯⎯⎯⎯ corresponds to QR⎯⎯⎯⎯⎯. If AB = 9, BC = 12, CA = 6, and PQ = 3, what are the lengths of QR⎯⎯⎯⎯⎯ and RP⎯⎯⎯⎯⎯?

Respuesta :

Zac555
QR = 4, RP = 2. Remember that fraction is also known as ratio. So use steps/formulas as per necessary. U can also use algebra ☺

Answer:

/QR/ = 4 and /RP/ = 2.

Step-by-step explanation:

Comparing the two triangles,

[tex]\frac{/AB/}{/BC/}[/tex] = [tex]\frac{/PQ/}{/QR/}[/tex]

⇒ [tex]\frac{9}{12}[/tex] = [tex]\frac{3}{/QR/}[/tex]

   /QR/ = 4

Also,

  [tex]\frac{/AB/}{/AC/}[/tex] = [tex]\frac{/PQ/}{/PR/}[/tex]

⇒ [tex]\frac{9}{6}[/tex] = [tex]\frac{3}{/PR/}[/tex]

   /RP/ = 2

Therefore, /QR/ = 4, /RP/ = 2.