Answer:
[tex]pg\int\limits^7_7(10-y)2\sqrt{7^2-y^2} \, dy[/tex]
*The last bound is negative 7
Then it equals 15085928 or 1.5E7
Step-by-step explanation:
[tex]x^2+y^2=7^2[/tex]
area = 2xdy
depth = (7+3)-y -> (10-y)
total force = [tex]pg\int\limits^7_7 {(10-y)2x} \, dy[/tex]
Substitute 2x from the first equation as x=[tex]\sqrt{7^2-y^2}[/tex]
total force = [tex]pg\int\limits^7_7 {(10-y)2\sqrt{49-y^2} } \, dy[/tex]
=pg1539.38
=(1,000)(9.8)(1539.38)=1.5E7 N
*Lower bound is -7, can't get the program to allow me to put it as a negative