contestada

In ΔOPQ, p = 180 inches, q = 120 inches and ∠O=171°. Find the length of o, to the nearest inch.

Respuesta :

Given:

In ΔOPQ, p = 180 inches, q = 120 inches and ∠O=171°.

To find:

The length of o, to the nearest inch.

Solution:

According to cosine formula,

[tex]a^2=b^2+c^2-2bc\cos A[/tex]

Using cosine formula in ΔOPQ, we get

[tex]o^2=p^2+q^2-2pq\cos O[/tex]

On substituting the values, we get

[tex]o^2=(180)^2+(120)^2-2(180)(120)\cos (171^\circ)[/tex]

[tex]o^2=32400+14400-43200(-0.9877)[/tex]

[tex]o^2=46800+42668.64[/tex]

[tex]o^2=89468.64[/tex]

Taking square root on both sides.

[tex]o=\sqrt{89468.64}[/tex]

[tex]o=299.113[/tex]

[tex]o\approx 299[/tex]

Therefore, the length of o is about 299 inches.

Answer:299

Step-by-step explanation: