Respuesta :

Answer:

ΔH°rxn = -827.5 kJ

Explanation:

Let's consider the following balanced equation.

2 PbS(s) + 3 O₂(g) → 2 PbO(s) + 2 SO₂(g)

We can calculate the standard enthalpy of reaction (ΔH°rxn) from the standard enthalpies of formation (ΔH°f) using the following expression.

ΔH°rxn = [2 mol × ΔH°f(PbO(s)) + 2 mol × ΔH°f(SO₂(g) )] - [2 mol × ΔH°f(PbS(s)) + 3 mol × ΔH°f(O₂(g) )]

ΔH°rxn = [2 mol × ΔH°f(PbO(s)) + 2 mol × ΔH°f(SO₂(g) )] - [2 mol × ΔH°f(PbS(s)) + 3 mol × ΔH°f(O₂(g) )]

ΔH°rxn = [2 mol × (-217.32 kJ/mol) + 2 mol × (-296.83)] - [2 mol × (-100.4) + 3 mol × 0 kJ/mol]

ΔH°rxn = -827.5 kJ

The standard enthalpy of the reaction is -827.5 kJ/mol

The standard enthalpy of reaction [tex]\mathbf{\Delta H^0_{rxn}}[/tex] is the enthalpy change that happens in a system whenever one mole of the matter is converted through a chemical process under normal conditions.

The given reaction can be expressed as:

2PbS(s) + 3O₂(g) → 2PbO(s) + 2SO₂(g)

The standard enthalpy can be represented by the equation:

[tex]\mathbf{\Delta H^0_{rxn} = \sum \Delta _f ^0(products) - \sum \Delta _f^0(reactants)}[/tex]

At standard conditions, the standard enthalpies of formation of the given species are:

  • ΔH°f(PbO(s)) = 219 kJ/mol
  • ΔH°f(SO₂(g)) = -296.83 kJ/mol
  • ΔH°f(PbS(s))  = 100.4 kJ/mol
  • ΔH°f(O₂(g)) = 0 kJ/mol

 

[tex]\mathbf{ \Delta H^0_{rxn} = \Big[2 mol \times \Delta H^0_f(PbO(s)) + 2 mol \times \Delta H^0_ f(SO_2(g) )\Big] - \Big[2 mol \times \Delta H^0_f (PbS(s))} + \mathbf{ 3 mol \times \Delta H^0_f(O_2(g) )\Big] }}[/tex]

 

[tex]\mathbf{\Delta H^0rxn = [2 mol \times (-217.32 kJ/mol) + 2 mol \times (-296.83)] - [2 mol \times (-100.4)} \\ \mathbf{+ 3 mol \times 0 kJ/mol]}}[/tex]

[tex]\mathbf{\Delta H^0rxn = -827.5 \ kJ/mol}}[/tex]

Therefore, we can conclude that the standard enthalpy of the reaction is -827.5 kJ/mol

Learn more about standard enthalpy of the reaction here:

https://brainly.com/question/25140395?referrer=searchResults