Respuesta :

Answer:

In a nutshell, units of A and B are [tex]\frac{1}{[l]^{2}}[/tex] and [tex]\frac{[l]}{[t]}[/tex], respectively.

Explanation:

From Dimensional Analysis we understand that [tex]x[/tex] and [tex]y[/tex] have length units ([tex][l][/tex]) and [tex]t[/tex] have time units ([tex][t][/tex]). Then, we get that:

[tex][l] = A\cdot [l]^{3}[/tex] (Eq. 1)

[tex][l] = B\cdot [t][/tex] (Eq. 2)

Now we finally clear each constant:

[tex]A = \frac{[l]}{[l]^{3}}[/tex]

[tex]A = \frac{1}{[l]^{2}}[/tex]

[tex]B = \frac{[l]}{[t]}[/tex]

In a nutshell, units of A and B are [tex]\frac{1}{[l]^{2}}[/tex] and [tex]\frac{[l]}{[t]}[/tex], respectively.