Find the distance along an arc on the surface of the earth that subtends a central angle of 1 minutes (1 minute = 1/60 degree). The radius of the earth is 3960 miles. Round to the thousandths. (3 decimal places)

Respuesta :

Answer:

1.152 miles

Explanation:

Given: central angle = 1 minute = [tex](\frac{1}{60}) ^{o}[/tex]

           radius of the earth = 3960 miles

The length of an arc = [tex]\frac{\alpha }{360^{o} }[/tex] 2[tex]\pi[/tex]r

where: [tex]\alpha[/tex] is the central angle, and r is the radius.

Thus,

Distance along the arc = [tex]\frac{\alpha }{360^{o} }[/tex] 2[tex]\pi[/tex]r

Distance along the arc = [tex]\frac{(\frac{1}{60}) ^{o} }{360^{o} }[/tex] x 2 x [tex]\frac{22}{7}[/tex] x 3960

                                      = [tex]\frac{(\frac{1}{60}) ^{o} }{360^{o} }[/tex] x 24891.4286

                                      = 1.1524

The required distance along an arc is 1.152 miles.