Consider the following cost function.
A. Find the average cost and marginal cost functions.
B. Determine the average and marginal cost when x = a.
C. Interpret the values obtained in part​ (b).
C(x) = 1000 + 0.1x, 0 ≤ x ≤ 50000 ≤ x ≤ 5000, a = 2000

Respuesta :

Answer:

a)Average cost function =[tex]\bar{C(x)}=\frac{1000+0.1x}{x}[/tex]

Marginal cost function =[tex]C'x=0.1[/tex]

b) [tex]\bar{C(2000)}=0.6[/tex]

[tex]C'(2000)=0.1[/tex]

c)[tex]\bar{C(2000)}=0.6[/tex] is the average cost to produce first 2000 items

C'(2000)=0.1 is the marginal cost to produce 2001 th item

Step-by-step explanation:

Cost function: [tex]C(x) = 1000 + 0.1x[/tex]

a)Find the average cost and marginal cost functions.

Average cost function =[tex]\bar{C(x)}=\frac{C(x)}{x}[/tex]

Average cost function =[tex]\bar{C(x)}=\frac{1000+0.1x}{x}[/tex]

Marginal cost function =[tex]C'x=0.1[/tex]

b) Determine the average and marginal cost when x = a.

a = 2000

Average cost function =[tex]\bar{C(x)}=\frac{1000+0.1x}{x}=\frac{1000+0.1a}{a}=\frac{1000+0.1(2000)}{2000}=0.6[/tex]

So, [tex]\bar{C(2000)}=0.6[/tex]

Marginal cost function =[tex]C'(2000)=0.1[/tex]

c)Interpret the values obtained in part​ (b).

[tex]\bar{C(2000)}=0.6[/tex] is the average cost to produce first 2000 items

C'(2000)=0.1 is the marginal cost to produce 2001 th item