Express the following equation in slope-intercept form: 13x - 3y = 18 Select the best answer from the choices provided. A. y = 3 x + -27.33 13 B. y = - 3 x + 33.33 13 C. y = 13 x + -6 3 D. y = - 13 x + 20 3

Express the following equation in slopeintercept form 13x 3y 18 Select the best answer from the choices provided A y 3 x 2733 13 B y 3 x 3333 13 C y 13 x 6 3 D class=

Respuesta :

Answer:

The equation in the slope-intercept form is y =  [tex]\frac{13}{3}x[/tex] + -6 ⇒ C

Step-by-step explanation:

The slope-intercept form of the linear equation is

y = m x + b, where

  • m is the slope of the line
  • b is the y-intercept

∵ The equation is 13x - 3y = 18

→ At first move x from the left side to the right side by subtracting 13x

  from both sides

∴ 13x - 13x - 3y = 18 - 13x

∴ - 3y = 18 - 13x

→ Make the coefficient of y equal 1 by dividing both sides by -3

∵ [tex]\frac{-3y}{-3}=\frac{18}{-3}-\frac{13x}{-3}[/tex]

∴ y = -6 - ([tex]-\frac{13}{3}x[/tex])

→ Remember (-)(-) = (+)

∴ y = -6 + [tex]\frac{13}{3}x[/tex]

→ Switch the two terms of the right side

∴ y =  [tex]\frac{13}{3}x[/tex] + - 6

The equation in the slope-intercept form is y =  [tex]\frac{13}{3}x[/tex] + -6