What is the complete factorization of the polynomial function over the set of complex numbers?

f(x)=x3−5x2+4x−20



Enter your answer in the box.

Respuesta :

Answer:

[tex]x^3-5x^2+4x-20=(x-5)(x+2\mathbf{i})(x-2\mathbf{i})[/tex]

Step-by-step explanation:

Factorization of polynomials

Factor:

[tex]f(x)=x^3-5x^2+4x-20[/tex]

There are several techniques to factor polynomials. We'll use algebraic manipulation and common factor:

Separate in groups:

[tex](x^3-5x^2)+(4x-20)[/tex]

Factor out 4 from 4x-20:

[tex]=(x^3-5x^2)+4(x-5)[/tex]

Factor out [tex]x^2[/tex] from [tex]x^3-5x^2[/tex]

[tex]=x^2(x-5)+4(x-5)[/tex]

Factor out x-5:

[tex]=(x-5)(x^2+4)[/tex]

The roots of

[tex]x^2+4=0[/tex]

Are two complex numbers:

[tex]x=2\mathbf{i}, x=-2\mathbf{i}[/tex]

The complete factorization is:

[tex]\boxed{x^3-5x^2+4x-20=(x-5)(x+2\mathbf{i})(x-2\mathbf{i})}[/tex]