Answer:
[tex]p_2=5.17torr[/tex]
Explanation:
Hello.
In this case, by using the Clausius-Clapeyron Equation which allows us to relate the vapor pressure, temperature and heat of vaporization as shown below:
[tex]ln(\frac{p_1}{p_2} )=\frac{\Delta _vH}{R}(\frac{1}{T_2}-\frac{1}{T_1} )[/tex]
Whereas [tex]p_1[/tex] is 760 torr due to the normal conditions. In such a way, for computing the vapor pressure of benzaldehyde at 53.5 °C (326.65 K), we proceed as shown below:
[tex]\frac{p_1}{p_2} =exp[\frac{48800J/mol}{8.314\frac{J}{mol*K}}(\frac{1}{326.65K}-\frac{1}{451.0K} )]\\\\\frac{p_1}{p_2}=147.0[/tex]
Thus, the vapor pressure at the final T is:
[tex]p_2=\frac{p_1}{147.0}=\frac{760torr}{147.0}\\ \\p_2=5.17torr[/tex]
Best regards!