Respuesta :

Answer:

[tex]\theta = 14.1\ degrees[/tex]

[tex]846\ minutes[/tex]

Step-by-step explanation:

Given

[tex]csc(\theta) = 4.1191[/tex]

Required

Solve for [tex]\theta[/tex]

[tex]csc(\theta) = 4.1191[/tex]

[tex]csc(\theta) = \frac{1}{sin(\theta)}[/tex]

So, we have:

[tex]\frac{1}{sin(\theta)} = 4.1191[/tex]

Invert both sides

[tex]sin(\theta) = \frac{1}{4.1191}[/tex]

[tex]sin(\theta) = 0.2428[/tex]

Take [tex]sin^{-1}[/tex] of both sides

[tex]sin^{-1} sin(\theta) = sin^{-1}0.2428[/tex]

[tex]\theta = sin^{-1}0.2428[/tex]

[tex]\theta = 14.0518577574[/tex]

[tex]\theta = 14.1\ degrees[/tex] --- approximated

Convert to minutes:

[tex]1\ degree = 60\ minutes[/tex]

So:

[tex]14.1\ degrees = 14.1 * 60\ minutes[/tex]

[tex]14.1\ degrees = 846\ minutes[/tex]