Respuesta :
Answer:
[tex]k=6.48x10^{-3}M^{-1}s^{-1}[/tex]
Explanation:
Hello.
In this case, based on the given information, we can write the rate law as shown below:
[tex]r=k[H_2O_2][KI][/tex]
Since the overall order of reaction is 2 being 1 for reach reactant. Thus, by knowing the initial rate and concentrations, the rate constant turns out:
[tex]k=\frac{r}{[H_2O_2][KI]}=\frac{7.50x10^{-4}M/s}{0.546M*0.212M}\\ \\k=6.48x10^{-3}M^{-1}s^{-1}[/tex]
Best regards!
The rate constant, k is [tex]6.48x10^{-3}M^{-1}s^{-1}[/tex]
Rate law:
The rate law should be
[tex]r = k[H_2O_2]{KI}[/tex]
Since the total order of the reaction is 2 being 1 for reach reactant. So, by knowing the beginning rate and concentrations, the rate constant turns out:
[tex]k = \frac{r}{k[H_2O_2]{KI}} = \frac{7.50x10^{-4}M/s}{0.546M\times 0.212M}[/tex]
k = [tex]6.48x10^{-3}M^{-1}s^{-1}[/tex]
Learn more about reactants here; https://brainly.com/question/21029530