a. Estimate, with 95 percent confidence, the mean height for all students enrolled in BMGT 230, lastsemester.b. How would the width of the interval in Part a change if the standard deviation equaled 3.33 inches, holding all other values/ideas constant?c. How would the width of the interval in Part a change if the mean equaled 71 inches, holding all other values/ideas constant?

Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

a

The 95% confidence interval  is  [tex] 228.5<  \mu <  231.5  [/tex]    

b

The width will reduce by one

c

The width will remain the same

Step-by-step explanation:

Considering question a

From the question we are told that

  The sample size is  n = 36

   The standard deviation is  [tex]\sigma =4.44 \ inches[/tex]

  The mean is  [tex]\mu = 230 \ inches[/tex]

From the question we are told the confidence level is  95% , hence the level of significance is    

      [tex]\alpha = (100 - 95 ) \%[/tex]

=>   [tex]\alpha = 0.05[/tex]

Generally from the normal distribution table the critical value  of  [tex]\frac{\alpha }{2}[/tex] is  

   [tex]Z_{\frac{\alpha }{2} } =  1.96[/tex]

Generally the margin of error is mathematically represented as  

      [tex]E_1 = Z_{\frac{\alpha }{2} } *  \frac{\sigma }{\sqrt{n} }[/tex]

=> [tex]E_1 = 1.96*  \frac{4.44}{\sqrt{36} }[/tex]

=> [tex]E_1 = 1.4504 [/tex]

Generally the width of the confidence interval is

      [tex]W_1 = 2 * E_1[/tex]

=>   [tex]W_1 = 2 * 1.4504[/tex]  

=>   =>   [tex]W_1 = 3[/tex]

Generally 95% confidence interval is mathematically represented as  

      [tex]\= x -E <  \mu <  \=x  +E[/tex]

=>     [tex] 230 -1.4504 <  \mu < 230 + 1.4504 [/tex]

=>     [tex] 228.5<  \mu <  231.5  [/tex]    

Considering question b

when [tex]\sigma_1 = 3.33 \ inches[/tex]

Generally the margin of error is mathematically represented as  

      [tex]E_2 = Z_{\frac{\alpha }{2} } *  \frac{\sigma_1 }{\sqrt{n} }[/tex]

=> [tex]E_2 = 1.96*  \frac{3.33}{\sqrt{36} }[/tex]

=> [tex]E_2 = 1.0878 [/tex]

Generally the width of the confidence interval is

      [tex]W_2 = 2 * E_2[/tex]

=>   [tex]W_2 = 2 * 1.0878[/tex]  

=>     [tex]W_2 = 2[/tex]

So comparing [tex]W_1 \ and \ W_2[/tex] we see that the width will decrease by 1

Considering question b

When  [tex]\= x = 71[/tex]

Generally 95% confidence interval is mathematically represented as  

      [tex]\= x -E <  \mu <  \=x  +E[/tex]

=>     [tex] 69.55<  \mu <  72.45[/tex]

Generally the width is mathematically represented as

     [tex]W_3 = 72.45 - 69.55[/tex]

=>  [tex]W_3 = 3[/tex]

Comparing [tex]W_2 \ and \ W_1[/tex] we see that the width of the confidence interval remain the same

 

   

   

Ver imagen okpalawalter8