Answer:
Step-by-step explanation:
Given the function
f(x) = 2x3 − 6x2 − 18x − 4 on the interval [-10, 10]
At the end point x = -10
f(-10) = 2(-10)³ − 6(-10)² − 18(-10) − 4
f(-10) = 2(-1000)-6(100)+180-4
f(-10) = -2000-600+176
f(-10) = -1824
At the end point x = 10
f(10) = 2(10)³ − 6(10)² − 18(10) − 4
f(10) = 2(1000)-6(100)-180-4
f(10) = 2000-600-184
f(10) = 1400-184
f(10) = 1216
Hence the absolute minimum is at f(x) = -1824 and maximum is at f(x) = 1216