Respuesta :

Answer:

Step-by-step explanation:

Given the function

f(x) = 2x3 − 6x2 − 18x − 4 on the interval [-10, 10]

At the end point x = -10

f(-10) = 2(-10)³ − 6(-10)² − 18(-10) − 4

f(-10) = 2(-1000)-6(100)+180-4

f(-10) = -2000-600+176

f(-10) = -1824

At the end point x = 10

f(10) = 2(10)³ − 6(10)² − 18(10) − 4

f(10) = 2(1000)-6(100)-180-4

f(10) = 2000-600-184

f(10) = 1400-184

f(10) = 1216

Hence the absolute minimum is at f(x) = -1824 and maximum is at f(x) = 1216