Respuesta :

Given:

The points A(-3, 3), B(0, 7), C(4, 10), D(1, 6) create parallelogram ABCD.

To find:

The perimeter of parallelogram ABCD.

Solution:

Distance formula is

[tex]Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Using distance formula, find the side length of parallelogram.

[tex]AB=\sqrt{(0-(-3))^2+(7-3)^2}[/tex]

[tex]AB=\sqrt{(3)^2+(4)^2}[/tex]

[tex]AB=\sqrt{9+16}[/tex]

[tex]AB=\sqrt{25}[/tex]

[tex]AB=5[/tex]

Similarly,

[tex]BC=\sqrt{\left(4-0\right)^2+\left(10-7\right)^2}=5[/tex]

[tex]CD=\sqrt{\left(1-4\right)^2+\left(6-10\right)^2}=5[/tex]

[tex]AD=\sqrt{\left(1-\left(-3\right)\right)^2+\left(6-3\right)^2}=5[/tex]

Now,

Perimeter of ABCD is

[tex]P=AB+BC+CD+AD[/tex]

[tex]P=5+5+5+5[/tex]

[tex]P=20[/tex]

Therefore, the perimeter of parallelogram ABCD is 20 units.