Respuesta :

Answer:

14(3x-1) / 5x^2 (3x+ 1)

Step-by-step explanation:

Please let me know if I gloss over something you don't understand

1) First simplify the complex fraction:

This can be written as

18x-6/ 15x + 5  *  21x^2 / 9x^5

which can be simplified to

18x-6/ 15x + 5  *  7/ 3x^3

which can be written as

(18x-6) * 7 / 3x^3 (15x+ 5)

2)

factor 3 from the top of the expression

3(6x-2) * 7 / 3x^3 (15x + 5)

3)

reduce the fraction with 3

3(6x-2) * 7 / 3x^3 (15x + 5)

(6x-2) * 7 / x^3 (15x + 5)

4)

Distribute 7 through the parenthesis on the top

42x-14/ x^ 3 (15x+ 5)

5)

Distribute x^3 through the parenthesis on the bottom

42x-14/ 15x^4 + 5x^3

6)

factor 14 from the top of the expression

14 (3x -1)/ 15x^4 + 5x^3

7)

factor 5x^3 from the bottom

14 (3x -1)/ 5x^3 (3x + 1)