THIRD TIME ASKING PLEASE!! I NEED IN A FEW MINUTES!! WILL GIVE BRAINLIEST AND 10 POINTS EACH ANSWER! THANK YOU!
What is the smallest integer x, for which x, x+5, and 2x−15 can be the lengths of the sides of a triangle?

Respuesta :

Answer:

[tex]the \: least \: possible \: value \: of \: x \: is - 20.[/tex]

Step-by-step explanation:

[tex]considering \: a \: right \: angled \: traingle : \\ let \: the \: opp(i.e \: hieght)\: \: = x \\ let \: the \: hyp (i.e \: slant \: hieght)\:\: = x + 5\\ let \: the \: adj(i.e \: base)\: = 2x - 15 \\ then \: using \: the \: pythagorean \: rule : \\ {(x + 5)}^{2} = {x}^{2} + {(2x - 15)}^{2} \\ {4x}^{2} + 70x - 200 = 0 \\ using \: the \: quadratic \: equation : \\ x = 2.5 \: or \: x = - 20.[/tex]