Respuesta :

Answer:

The length of QR is 29.9 cm

Step-by-step explanation:

Let us revise the sine and cosine rules

In triangle ABC:

[tex]\frac{AB}{sin(C)}=\frac{BC}{sin(A)}=\frac{AC}{sin(B)}[/tex] ⇒ sine rule

(AC)² = (AB)² + (BC)² - 2(AB)(BC)cos(∠B) ⇒ cosine rule

Let us use these rules to solve the question

In Δ PQS

∵ [tex]\frac{PS}{sin(Q)}=\frac{QS}{sin(P)}[/tex]

∵ PS = 11.7 cm

∵ m∠P = 95°, m∠Q = 28°

→ Substitute them in the rule above

∴ [tex]\frac{11.7}{sin(28)}=\frac{QS}{sin(95)}[/tex]

→ By using cross multiplication

∴ QS × sin(28) = 11.7 × sin(95)

→ Divide both sides by sin(28) to find QS

QS = 24.82680292 cm

Now let us use the cosine rule to find QR

In Δ QSR

∵ (QR)² = (QS)² + (RS)² - 2(QS)(RS)cos(∠QSR)

∵ RS = 10.2 cm

∵ m∠QSR = 110°

→ Substitute these values in the rule above

∴ (QR)² = (24.82680292)² + (10.2)² - 2(24.82680292)(10.2)cos(110)

∴ (QR)² = 893.631984

→ Take √  for both sides

∴ QR = 29.89367799

→ Round it to 3 significant figures

QR = 29.9 cm