Respuesta :

Answer: 0 i think

Step-by-step explanation:

Answer:

2x^4+4x^3+x^2-10

[tex]2x^4+4x^3+x^2-10[/tex]

Step-by-step explanation:

[tex](2x^4 + 4x^3-8) + (x^2- 2)\\\\\mathrm{Remove\:parentheses}:\quad \left(a\right)=a\\\\=2x^4+4x^3-8+x^2-2\\\\\mathrm{Group\:like\:terms}\\\\=2x^4+4x^3+x^2-8-2\\\\\mathrm{Subtract\:the\:numbers:}\:-8-2=-10\\\\=2x^4+4x^3+x^2-10[/tex]

If you meant to put the division sign ;

[tex]\frac{\left(2x^4+4x^3-8\right)}{\left(x^2-2\right)}\\\\Divide\:\: \frac{\left2x^4+4x^3-8\right}{\left x^2-2\right} \: : \: 2x^2+\frac{4x^3+4x^2-8}{x^2-2}\\\\=2x^2+\frac{4x^3+4x^2-8}{x^2-2}\\\\Divide \: \:\frac{4x^3+4x^2-8}{x^2-2} : \:\frac{4x^2+8x-8}{x^2-2}\\=2x^2+4x+\frac{4x^2+8x-8}{x^2-2}\\\\Divide\\\\=2x^2+4x+4+\frac{8x}{x^2-2}[/tex]