Respuesta :

Step-by-step explanation:

Hey there!

The points are; A(-2,3) and B(X,-5). And the distance between them is (√80) units.

We have;

[tex]d = \sqrt{ {(x2 - x1)}^{2} + {(y2 - y1)}^{2} } [/tex]

Keep all values.

[tex] \sqrt{80} = \sqrt{ {(x + 2)}^{2} + {( - 5 - 3)}^{2} } [/tex]

Squaring on both sides.

[tex] { (\sqrt{80}) }^{2} = ( { \sqrt{( {x + 2)}^{2} + ( { - 8)}^{2} } )}^{2} [/tex]

Simplify them.

[tex]80 = ( {x + 2)}^{2} + 64[/tex]

[tex]( {x + 2)}^{2} = 80 - 64[/tex]

[tex]( {x + 2)}^{2} = 16[/tex]

[tex]( {x + 2)}^{2} = {4}^{2} [/tex]

Cancel square from both sides.

[tex]x + 2 = 4[/tex]

X= 4-2

Therefore, X= 2.

The x-coordinate of B is 2.

Hope it helps....

asm24

(80)2=((x+2)2+(−8)2)2

Simplify them.

80 = ( {x + 2)}^{2} + 64

80=(x+2)2+64

( {x + 2)}^{2} = 80 - 64

(x+2)2=80−64

( {x + 2)}^{2} = 16(x+2)2=16

( {x + 2)}^{2} = {4}^{2}

(x+2)2=4^2

Cancel square from both sides.

x + 2 = 4

X= 4-2

Therefore, X= 2.

The x-coordinate of B is 2.