Respuesta :

Answer:

[tex]sin\:(J)\:=\:\frac{4\sqrt{5}}{7\sqrt{2}}[/tex]          

Step-by-step explanation:

As we know that

sinФ = opposite ÷ hypotenuse

Given the triangle with

  • Ф = J
  • The opposite of j is [tex]4\sqrt{5}[/tex]

The length of the hypotenuse of a right triangle can be calculated as:

[tex]c=\sqrt{a^2+b^2}[/tex]

[tex]c=\sqrt{\left(3\sqrt{2}\right)^2+\left(4\sqrt{5}\right)^2}[/tex]

[tex]c=\sqrt{3^2\cdot \:2+4^2\cdot \:5}[/tex]

[tex]c=\sqrt{18+80}[/tex]

[tex]c=\sqrt{98}[/tex]

[tex]c=\sqrt{7^2\cdot \:2}[/tex]

[tex]c=\sqrt{2}\sqrt{7^2}[/tex]

[tex]c=7\sqrt{2}[/tex]

so

sinФ = opposite ÷ hypotenuse

substituting the values Ф = J, opposite = [tex]\sqrt{5}[/tex], hypotenuse = [tex]c=7\sqrt{2}[/tex]

[tex]sin\:(J)\:=\:\frac{4\sqrt{5}}{7\sqrt{2}}[/tex]          

Therefore,

[tex]sin\:(J)\:=\:\frac{4\sqrt{5}}{7\sqrt{2}}[/tex]