If m ≤ f(x) ≤ M for a ≤ x ≤ b, where m is the absolute minimum and M is the absolute maximum of f on the interval [a, b], then
m(b − a) ≤
b
f(x) dx

a
≤ M(b − a).
Use this property to estimate the value of the integral.
2
3
1 + x2
dx

0

If m fx M for a x b where m is the absolute minimum and M is the absolute maximum of f on the interval a b then mb a b fx dx a Mb a Use this property to estimat class=

Respuesta :

Answer:

smaller value is 1.2

larger value is 6

Step-by-step explanation:

[tex]f(x)=\frac{3}{1+x^{2} }[/tex]

when x=a=0, one has

[tex]f(0)=\frac{3}{1+0^{2} } \\f(0)=3[/tex]

now, when x=b=2, one has

[tex]f(2)=\frac{3}{1+2^{2} } \\f(2)=\frac{3}{5}[/tex]

Therefore, the absolute minumun is

[tex]m=\frac{3}{5}[/tex]

and the absolute maximun is

[tex]M=3[/tex]

The approximation to the integral is

[tex]\frac{3}{5}(2-0)\leq \int\limits^2_0 {f(x)} \, dx \leq 3(2-0)[/tex]

hence

[tex]\frac{3}{5}(2)\leq \int\limits^2_0 {f(x)} \, dx \leq 3(2)\\\frac{6}{5} \leq \int\limits^2_0 {f(x)} \, dx \leq 6\\1.2 \leq \int\limits^2_0 {f(x)} \, dx \leq 6[/tex]