Respuesta :
Answer:
y=mx+b
y=-4x +12 is your equation
m= yo
your slope
Step-by-step explanation:
Answer:
The equation of the line that passes through the points (-1,8) and (2,-4) is:
- [tex]y=-4x+4[/tex]
Step-by-step explanation:
Given the points
- (-1,8)
- (2,-4)
[tex]\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]\left(x_1,\:y_1\right)=\left(-1,\:8\right),\:\left(x_2,\:y_2\right)=\left(2,\:-4\right)[/tex]
[tex]m=\frac{-4-8}{2-\left(-1\right)}[/tex]
[tex]m=-4[/tex]
As the point-slope form of the line equation is
[tex]y-y_1=m\left(x-x_1\right)[/tex]
where m is the slope.
substituting the values m = -4 and the point (-1,8)
[tex]y-\(8\right=-4\left(x-\left(-1\right)\right)[/tex]
[tex]y-8 = -4(x+1)[/tex]
Add 8 to both sides
[tex]y-8+8=-4\left(x+1\right)+8[/tex]
[tex]y=-4x+4[/tex]
Therefore, the equation of the line that passes through the points (-1,8) and (2,-4) is:
- [tex]y=-4x+4[/tex]