Respuesta :
Answer:
[tex]d = q(z-1)[/tex]
[tex]S_n = \frac{nq}{2}(2 + (n-1)(z-1))[/tex]
[tex]S_{10} = 5q(9z -7)[/tex]
Step-by-step explanation:
Given
[tex]T_1 = q[/tex]
[tex]T_2 = qz[/tex]
Solving (a1): The common difference (d)
d is calculated as
[tex]d = T_2 - T_1[/tex]
This gives:
[tex]d = qz - q[/tex]
Factorize:
[tex]d = q(z-1)[/tex]
Solving (a2): Sum of n terms
This is calculated using:
[tex]S_n = \frac{n}{2}(2*T_1 + (n-1)d)[/tex]
Substitute values for T1 and d
[tex]S_n = \frac{n}{2}(2*q + (n-1)q(z-1))[/tex]
[tex]S_n = \frac{n}{2}(2q + q(n-1)(z-1))[/tex]
Factorize:
[tex]S_n = \frac{n}{2}(q(2 + (n-1)(z-1)))[/tex]
[tex]S_n = \frac{nq}{2}(2 + (n-1)(z-1))[/tex]
Solving (b): Sum of first 10.
In this case, n = 10
So:
[tex]S_n = \frac{nq}{2}(2 + (n-1)(z-1))[/tex]
becomes
[tex]S_{10} = \frac{10 * q}{2}(2 + (10-1)(z-1))[/tex]
[tex]S_{10} = 5 * q(2 + 9(z-1))[/tex]
[tex]S_{10} = 5q(2 + 9(z-1))[/tex]
[tex]S_{10} = 5q(2 + 9z-9)[/tex]
[tex]S_{10} = 5q(2 -9+ 9z)[/tex]
[tex]S_{10} = 5q(-7+ 9z)[/tex]
[tex]S_{10} = 5q(9z -7)[/tex]
Given that the first term and the second term of an arithmetic sequence is q and qz respectively, therefore:
a. Common difference (d) = [tex]\mathbf{d = q(z - 1)}[/tex]
Sum of the first n terms is: [tex]\mathbf{S_n = \frac{qn}{2}[2 + (n - 1)(z - 1)]}[/tex]
b. [tex]\mathbf{S_{10} = 5q(9z - 7)}[/tex]
Recall:
- The common difference (d) of an arithmetic sequence = difference between the next term and the previous term
- Sum of n terms, [tex]S_n[/tex] of arithmetic sequence = [tex]\frac{n}{2}[2a + (n - 1)d][/tex]
Given:
- First term, [tex]T_1 = q[/tex] (this is also "a")
- Second term, [tex]\\\\T_2 = qz[/tex]
a. Common difference (d) = [tex]T_2 - T_1[/tex]
- Substitute
[tex]d = qz - q\\\\\mathbf{d = q(z - 1)}[/tex]
Sum of n terms:
[tex]T_n = \frac{n}{2}[2a + (n - 1)d][/tex]
- Substitute by plugging in the value of d and a
[tex]S_n = \frac{n}{2}[2(q) + (n - 1)q(z - 1)]\\\\S_n = \frac{n}{2}[2q + q(n - 1)(z - 1)]\\\\S_n = \frac{qn}{2}[2 + 1(n - 1)(z - 1)]\\\\\mathbf{S_n = \frac{qn}{2}[2 + (n - 1)(z - 1)]}[/tex]
b. Sum of the first 10 terms:
- Substitute n = 10 into [tex]S_n = \frac{qn}{2}[2 + (n - 1)(z - 1)][/tex]
[tex]S_{10} = \frac{q(10)}{2}[2 + (10 - 1)(z - 1)][/tex]
- Simplify
[tex]S_{10} = 5q[2 + (9)(z - 1)]\\\\S_{10} = 5q(2 + 9z - 9)\\\\[/tex]
- Add like terms
[tex]\mathbf{S_{10} = 5q(9z - 7)}[/tex]
In summary, given that the first term and the second term of an arithmetic sequence is q and qz respectively, therefore:
a. Common difference (d) = [tex]\mathbf{d = q(z - 1)}[/tex]
Sum of the first n terms is: [tex]\mathbf{S_n = \frac{qn}{2}[2 + (n - 1)(z - 1)]}[/tex]
b. [tex]\mathbf{S_{10} = 5q(9z - 7)}[/tex]
Learn more here:
https://brainly.com/question/14311840