Respuesta :

Answer:

[tex]y = 7(3^x)[/tex]

Step-by-step explanation:

Given

[tex](x_1,y_1) = (0,7)[/tex]

[tex](x_2,y_2) = (4,567)[/tex]

Required

Determine the formula

An exponential function is of the form:

[tex]y = ab^x[/tex]

For point [tex](x_1,y_1) = (0,7)[/tex]

[tex]7 = ab^0[/tex]

[tex]7 = a*1[/tex]

[tex]7 = a[/tex]

[tex]a = 7[/tex]

For point [tex](x_2,y_2) = (4,567)[/tex]

[tex]567 = ab^4[/tex]

Substitute 7 for a

[tex]567 = 7*b^4[/tex]

Divide both sides by 7

[tex]81 = b^4[/tex]

Take 4th root of both sides

[tex]\sqrt[4]{81} =\sqrt[4]{b^4}[/tex]

[tex]\sqrt[4]{81} =b[/tex]

[tex]b = \sqrt[4]{81}[/tex]

[tex]b = 3[/tex]

Substitute 7 for a and 3 for b in [tex]y = ab^x[/tex]

[tex]y = 7 * 3^x[/tex]

[tex]y = 7(3^x)[/tex]