Activity 1.2 Determine the SOLUTION SET of this following exponential inequalities

I need the answer now. pls can anyone answer this? I will mark the brainliest answer.
Wrong and rude answers will be reported.​

Activity 12 Determine the SOLUTION SET of this following exponential inequalitiesI need the answer now pls can anyone answer this I will mark the brainliest ans class=

Respuesta :

Answer:

1. [tex] x \ge -4 [/tex]

2. [tex] x < -2 [/tex]

Step-by-step explanation:

1. [tex] 10^{2x - 4} \le 1000^x [/tex]

Make both sides of the same base

[tex] 10^{2x - 4} \le (10^3)^x [/tex]

[tex] 10^{2x - 4} \le 10^{3x} [/tex]

Both bases will cancel each other

[tex] 2x - 4 \le 3x [/tex]

Subtract 2x from each side

[tex] - 4 \le 3x - 2x [/tex]

[tex] -4 \le x [/tex]

Rewrite

[tex] x \ge -4 [/tex]

2. [tex] (\frac{1}{5})^{3x + 10} > (\frac{1}{25}^{x + 4} [/tex]

Apply the inverse law of exponents

[tex] (5^{-1})^{3x + 10} > (25^{-1})^{x + 4} [/tex]

[tex] (5^{-1})^{3x + 10} > (5^{-2})^{x + 4} [/tex]

[tex] 5^{-3x - 10} > 5^{-2x - 8} [/tex]

Both bases will cancel each other

[tex] -3x - 10 > -2x - 8 [/tex]

Collect like terms

[tex] -3x + 2x > 10 - 8 [/tex]

[tex] -x > 2 [/tex]

Divide both sides by -1.

(Note: since we are dividing by a negative number, the inequality sign would change)

[tex] x < -2 [/tex]