Respuesta :

Answer:

table B represents the linear equation which is:

[tex]y=-3x+11[/tex]

The graph of the linear function is also attached below.

Step-by-step explanation:

Given the table B values

x               y

0              11

1               8

2               5

3               2

As the equation for the linear function

[tex]y=mx+b[/tex]

where m is the slope and b is the y-intercept

As the y-intercept can be obtained by setting x=0

From the table, it is clear that when the value of x=0, then the value of

y=11.

so (0, 11) is the y-intercept.

Also taking two points (0, 11) and (1, 8) to find the slope

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(0,\:11\right),\:\left(x_2,\:y_2\right)=\left(1,\:8\right)[/tex]

[tex]m=\frac{8-11}{1-0}[/tex]

[tex]m=-3[/tex]

so substituting the value m=-3 and the point (1, 8) in the point-slope form

[tex]y-y_1=m\left(x-x_1\right)[/tex]

[tex]y-8=-3\left(x-1\right)[/tex]

[tex]y-8=-3x+3[/tex]

[tex]y=-3x+3+8[/tex]

[tex]y=-3x+11[/tex]

comparing the equation with the slope-intercept form of linear equation

[tex]y=mx+b[/tex]

[tex]y=-3x+11[/tex]

here

  • m=slope=-3
  • b=y-intercept=11

Therefore, table B represents the linear equation which is:

[tex]y=-3x+11[/tex]

The graph of the linear function is also attached below.

Ver imagen absor201

Answer:

B

Step-by-step explanation: