Respuesta :

Space

Answer:

[tex]\displaystyle A = 300[/tex]

General Formulas and Concepts:

Calculus

Integrals

  • Definite Integrals
  • Area under the curve
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                                   [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:                                        [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:                                                             [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:                                                           [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Area of a Region Formula:                                                                                       [tex]\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]

Step-by-step explanation:

Step 1: Define

Identify

f(x) = 6x + 19

Interval [12, 15]

Step 2: Find Area

  1. Substitute in variables [Area of a Region Formula]:                                       [tex]\displaystyle A = \int\limits^{15}_{12} {(6x + 19)} \, dx[/tex]
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:                   [tex]\displaystyle A = \int\limits^{15}_{12} {6x} \, dx + \int\limits^{15}_{12} {19} \, dx[/tex]
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:                   [tex]\displaystyle A = 6\int\limits^{15}_{12} {x} \, dx + 19\int\limits^{15}_{12} {} \, dx[/tex]
  4. [Integrals] Integrate [Integration Rule - Reverse Power Rule]:                      [tex]\displaystyle A = 6(\frac{x^2}{2}) \bigg| \limits^{15}_{12} + 19(x) \bigg| \limits^{15}_{12}[/tex]
  5. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              [tex]\displaystyle A = 6(\frac{81}{2}) + 19(3)[/tex]
  6. Simplify:                                                                                                             [tex]\displaystyle A = 300[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e