contestada

10 workers produce 30 complex elements in 10 days. In how many days would 5
workers produce 24 elements?

Respuesta :

Given:

10 workers produce 30 complex elements in 10 days.

To find:

The number of days, in which 5  workers produce 24 elements.

Solution:

According to the question, let as assume

[tex]n_1=10[/tex]

[tex]w_1=30[/tex]

[tex]d_1=10[/tex]

[tex]n_2=x[/tex]

[tex]w_2=24[/tex]

[tex]d_2=5[/tex]

where, n is number of workers, w is work done, and d is number of days.

We have, a formula,

[tex]\dfrac{n_1\times d_1}{w_1}=\dfrac{n_2\times d_2}{w_1}[/tex]

Substituting the values in the above formula, we get

[tex]\dfrac{10\times 10}{30}=\dfrac{x\times 5}{24}[/tex]

[tex]\dfrac{10}{3}=\dfrac{5x}{24}[/tex]

Isolate variable x.

[tex]\dfrac{10}{3}\times \dfrac{24}{5}=\dfrac{5x}{24}\times \dfrac{24}{5}[/tex]

[tex]\dfrac{240}{15}=x[/tex]

[tex]16=x[/tex]

Therefore, the required number of days is 16.