Solution :
Given
[tex]$t_1=2+x_1$[/tex]
[tex]$t_2=1+x_2$[/tex]
Now,
[tex]$P(h<5)=1-P(h \geq5)$[/tex]
[tex]$0.4=1-P(h \geq5)$[/tex]
[tex]$0.6=P(h \geq5)$[/tex]
[tex]$0.6= e^{\frac{-x_1 5}{3600}}$[/tex]
Therefore, [tex]$x_1=368 \ veh/h$[/tex]
[tex]$=\frac{368}{1000} = 0.368$[/tex]
Given, [tex]$t_1=2+x_1$[/tex]
= 2 + 0.368
= 2.368 min
At user equilibrium, [tex]$t_2=t_1$[/tex]
∴ [tex]$t_2$[/tex] = 2.368 min
[tex]$t_2=1+x_2$[/tex]
[tex]$2.368=1+x_2$[/tex]
[tex]$x_2 = 1.368$[/tex]
[tex]$x_2 = 1.368 \times 1000$[/tex]
= 1368 veh/h