Respuesta :
Answer:
1. [tex]Perimeter = 10x^2+ 22x - 16[/tex]
2. [tex]Area = 6x^4 +28x^3 + 14x^2 - 48x[/tex]
3. [tex]x = 1[/tex] or [tex]x = -3.2[/tex]
4. [tex]Length = 0[/tex] and [tex]Width = 8[/tex]
5. [tex]Length = 6.72[/tex] and [tex]Width = 1.28[/tex]
6. Second Solution
7. [tex]Area = 8.6016[/tex]
Step-by-step explanation:
Given
[tex]Length = 3x^2 + 5x - 8[/tex]
[tex]Width = 2x^2 + 6x[/tex]
Solving (1): The perimeter
Perimeter is calculated as thus:
[tex]Perimeter = 2 * (Length + Width)[/tex]
Substitute values for Length and Width
[tex]Perimeter = 2 * (3x^2 + 5x - 8 + 2x^2 + 6x)[/tex]
Collect Like Terms
[tex]Perimeter = 2 * (3x^2+ 2x^2 + 6x + 5x - 8 )[/tex]
[tex]Perimeter = 2 * (5x^2+ 11x - 8 )[/tex]
Open Bracket
[tex]Perimeter = 10x^2+ 22x - 16[/tex]
Solving (2): The Area:
Area is calculated as thus:
[tex]Area = Length * Width[/tex]
Substitute values for Length and Width
[tex]Area = (3x^2 + 5x - 8) * (2x^2 + 6x)[/tex]
Expand Bracket
[tex]Area = 2x^2(3x^2 + 5x - 8) + 6x(3x^2 + 5x - 8)[/tex]
Open Bracket
[tex]Area = 6x^4 + 10x^3 - 16x^2 + 18x^3 + 30x^2 - 48x[/tex]
Collect Like Terms
[tex]Area = 6x^4 + 10x^3 + 18x^3 - 16x^2 + 30x^2 - 48x[/tex]
[tex]Area = 6x^4 +28x^3 + 14x^2 - 48x[/tex]
Solving (3): If perimeter is 16, show that x = 1 and x = -3.2
In (a) [tex]Perimeter = 10x^2+ 22x - 16[/tex]
Substitute 16 for Perimeter
[tex]16 = 10x^2+ 22x - 16[/tex]
Equate to 0
[tex]10x^2+ 22x - 16 -16=0[/tex]
[tex]10x^2+ 22x - 32=0[/tex]
Expand
[tex]10x^2+ 32x -10x- 32=0[/tex]
Factorize
[tex]x(10x + 32) - 1(10x + 32) = 0[/tex]
[tex](x - 1)(10x + 32) = 0[/tex]
Split
[tex]x - 1 =0[/tex] or [tex]10x + 32 = 0[/tex]
[tex]x = 1[/tex] or [tex]10x = -32[/tex]
[tex]x = 1[/tex] or [tex]x = -32/10[/tex]
[tex]x = 1[/tex] or [tex]x = -3.2[/tex]
Solving (4): Using x = 1; Solve the dimension of the rectangle
We have that:
[tex]Length = 3x^2 + 5x - 8[/tex]
[tex]Width = 2x^2 + 6x[/tex]
Substitute 1 for x in the given parameters
[tex]Length = 3(1)^2 + 5(1) - 8[/tex]
[tex]Length = 3*1 + 5*1 - 8[/tex]
[tex]Length = 3 + 5 - 8[/tex]
[tex]Length = 0[/tex]
[tex]Width = 2(1)^2 + 6(1)[/tex]
[tex]Width = 2*1 + 6*1[/tex]
[tex]Width = 2 + 6[/tex]
[tex]Width = 8[/tex]
Solving (5): Using x = -3.2; Solve the dimension of the rectangle
We have that:
[tex]Length = 3x^2 + 5x - 8[/tex]
[tex]Width = 2x^2 + 6x[/tex]
Substitute -3.2 for x in the given parameters
[tex]Length = 3(-3.2)^2 + 5(-3.2) - 8[/tex]
[tex]Length = 3*10.24 + 5(-3.2) - 8[/tex]
[tex]Length = 30.72 -16 - 8[/tex]
[tex]Length = 6.72[/tex]
[tex]Width = 2(-3.2)^2 + 6(-3.2)[/tex]
[tex]Width = 2*10.24 + 6(-3.2)[/tex]
[tex]Width = 20.48 -19.2[/tex]
[tex]Width = 1.28[/tex]
[tex]Length = 6.72[/tex] and [tex]Width = 1.28[/tex]
Solving (6):
In the first solution of the dimensions in number 4, we have that
[tex]Length = 0[/tex] and [tex]Width = 8[/tex]
This dimension can not be considered because the length of a rectangle can not be 0
In the second solution of the dimensions in number 5, we have that
[tex]Length = 6.72[/tex] and [tex]Width = 1.28[/tex]
This dimension makes more sense because both dimensions are greater than 0
Solving (7): Using (6), determine the Area
In (6), we conclude that
[tex]Length = 6.72[/tex] and [tex]Width = 1.28[/tex]
So, Area is calculated as thus:
[tex]Area = Length * Width[/tex]
[tex]Area = 6.72 * 1.28[/tex]
[tex]Area = 8.6016[/tex]