Answer:
Concave Up Interval: [tex](- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)[/tex]
Concave Down Interval: [tex](\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )[/tex]
General Formulas and Concepts:
Calculus
Derivative of a Constant is 0.
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Quotient Rule: [tex]\frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]
Chain Rule: [tex]\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Second Derivative Test:
- Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
- Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
- Number Line Test - Helps us determine whether a P.P.I is a P.I
Step-by-step explanation:
Step 1: Define
[tex]f(x)=\frac{3}{1+x^2}[/tex]
Step 2: Find 2nd Derivative
- 1st Derivative [Quotient/Chain/Basic]: [tex]f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}[/tex]
- Simplify 1st Derivative: [tex]f'(x)=\frac{-6x}{(1+x^2)^2}[/tex]
- 2nd Derivative [Quotient/Chain/Basic]: [tex]f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}[/tex]
- Simplify 2nd Derivative: [tex]f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}[/tex]
Step 3: Find P.P.I
- Set f"(x) equal to zero: [tex]0=\frac{6(3x^2-1)}{(1+x^2)^3}[/tex]
Case 1: f" is 0
- Solve Numerator: [tex]0=6(3x^2-1)[/tex]
- Divide 6: [tex]0=3x^2-1[/tex]
- Add 1: [tex]1=3x^2[/tex]
- Divide 3: [tex]\frac{1}{3} =x^2[/tex]
- Square root: [tex]\pm \sqrt{\frac{1}{3}} =x[/tex]
- Simplify: [tex]\pm \frac{\sqrt{3}}{3} =x[/tex]
- Rewrite: [tex]x= \pm \frac{\sqrt{3}}{3}[/tex]
Case 2: f" is undefined
- Solve Denominator: [tex]0=(1+x^2)^3[/tex]
- Cube root: [tex]0=1+x^2[/tex]
- Subtract 1: [tex]-1=x^2[/tex]
We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is [tex]x= \pm \frac{\sqrt{3}}{3}[/tex] (x ≈ ±0.57735).
Step 4: Number Line Test
See Attachment.
We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.
x = -1
- Substitute: [tex]f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}[/tex]
- Exponents: [tex]f"(x)=\frac{6(3(1)-1)}{(1+1)^3}[/tex]
- Multiply: [tex]f"(x)=\frac{6(3-1)}{(1+1)^3}[/tex]
- Subtract/Add: [tex]f"(x)=\frac{6(2)}{(2)^3}[/tex]
- Exponents: [tex]f"(x)=\frac{6(2)}{8}[/tex]
- Multiply: [tex]f"(x)=\frac{12}{8}[/tex]
- Simplify: [tex]f"(x)=\frac{3}{2}[/tex]
This means that the graph f(x) is concave up before [tex]x=\frac{-\sqrt{3}}{3}[/tex].
x = 0
- Substitute: [tex]f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}[/tex]
- Exponents: [tex]f"(x)=\frac{6(3(0)-1)}{(1+0)^3}[/tex]
- Multiply: [tex]f"(x)=\frac{6(0-1)}{(1+0)^3}[/tex]
- Subtract/Add: [tex]f"(x)=\frac{6(-1)}{(1)^3}[/tex]
- Exponents: [tex]f"(x)=\frac{6(-1)}{1}[/tex]
- Multiply: [tex]f"(x)=\frac{-6}{1}[/tex]
- Divide: [tex]f"(x)=-6[/tex]
This means that the graph f(x) is concave down between and .
x = 1
- Substitute: [tex]f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}[/tex]
- Exponents: [tex]f"(x)=\frac{6(3(1)-1)}{(1+1)^3}[/tex]
- Multiply: [tex]f"(x)=\frac{6(3-1)}{(1+1)^3}[/tex]
- Subtract/Add: [tex]f"(x)=\frac{6(2)}{(2)^3}[/tex]
- Exponents: [tex]f"(x)=\frac{6(2)}{8}[/tex]
- Multiply: [tex]f"(x)=\frac{12}{8}[/tex]
- Simplify: [tex]f"(x)=\frac{3}{2}[/tex]
This means that the graph f(x) is concave up after [tex]x=\frac{\sqrt{3}}{3}[/tex].
Step 5: Identify
Since f"(x) changes concavity from positive to negative at [tex]x=\frac{-\sqrt{3}}{3}[/tex] and changes from negative to positive at [tex]x=\frac{\sqrt{3}}{3}[/tex], then we know that the P.P.I's [tex]x= \pm \frac{\sqrt{3}}{3}[/tex] are actually P.I's.
Let's find what actual point on f(x) when the concavity changes.
[tex]x=\frac{-\sqrt{3}}{3}[/tex]
- Substitute in P.I into f(x): [tex]f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}[/tex]
- Evaluate Exponents: [tex]f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }[/tex]
- Add: [tex]f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }[/tex]
- Divide: [tex]f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}[/tex]
[tex]x=\frac{\sqrt{3}}{3}[/tex]
- Substitute in P.I into f(x): [tex]f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}[/tex]
- Evaluate Exponents: [tex]f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }[/tex]
- Add: [tex]f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }[/tex]
- Divide: [tex]f(\frac{\sqrt{3}}{3} )=\frac{9}{4}[/tex]
Step 6: Define Intervals
We know that before f(x) reaches [tex]x=\frac{-\sqrt{3}}{3}[/tex], the graph is concave up. We used the 2nd Derivative Test to confirm this.
We know that after f(x) passes [tex]x=\frac{\sqrt{3}}{3}[/tex], the graph is concave up. We used the 2nd Derivative Test to confirm this.
Concave Up Interval: [tex](- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)[/tex]
We know that after f(x) passes [tex]x=\frac{-\sqrt{3}}{3}[/tex] , the graph is concave up until [tex]x=\frac{\sqrt{3}}{3}[/tex]. We used the 2nd Derivative Test to confirm this.
Concave Down Interval: [tex](\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )[/tex]