Answer:
The center of the circle is:
Thus, option (2) is true.
Step-by-step explanation:
The circle equation is given by
[tex]\left(x-a\right)^2+\left(y-b\right)^2=r^2[/tex]
here,
Given the equation
[tex]\left(x-14\right)^2+\left(y+21\right)^2=64[/tex]
[tex]\mathrm{Rewrite}\:\left(x-14\right)^2+\left(y+21\right)^2=64\:\mathrm{in\:the\:form\:of\:the\:standard\:circle\:equation}[/tex]
[tex]\left(x-14\right)^2+\left(y-\left(-21\right)\right)^2=8^2[/tex]
comparing with the circle equation
[tex]\left(x-a\right)^2+\left(y-b\right)^2=r^2[/tex]
Therefore, the center of the circle is:
Thus, option (2) is true.