Answer:
x = 1[tex]\frac{12}{17}[/tex], y = -2[tex]\frac{15}{17}[/tex]
Step-by-step explanation:
2x + 5y + 11 = 0 --- Equation 1
3x - y - 8 = 0
15x - 5y - 40 = 0 --- Equation 2
Equations 1+2: 2x + 5y + 11 + 15x - 5y - 40 = 0 + 0
17x - 29 = 0
17x = 29
x = 29 ÷ 17
x = 1[tex]\frac{12}{17}[/tex]
Substitute x = 1[tex]\frac{12}{17}[/tex] into Equation 1:
2x + 5y + 11 = 0
2(1[tex]\frac{12}{17}[/tex]) + 5y + 11 = 0
3[tex]\frac{7}{17}[/tex] + 5y = -11
5y = -11 - 3[tex]\frac{7}{17}[/tex]
= -14[tex]\frac{7}{17}[/tex]
y = -14[tex]\frac{7}{17}[/tex] ÷ 5
y = -2[tex]\frac{15}{17}[/tex]