contestada

[tex]e^4^x -4=1[/tex]
(a) State the exact answer for x.



(b) State the approximate answer for x rounded to 4 decimal places.


WILL MARK BRAINLIEST IF YOU SHOW ALL WORK

Respuesta :

It looks like you tried to write

e^4^x

which I would interpret as either

[tex]e^{4^x}[/tex] (so the exponent on e is 4ˣ )

or

[tex]e^{4x}[/tex] (so the exponent on e is 4x )

as it's shown in the question body.

If you meant the first case,

[tex]e^{4^x}-4=1[/tex]

[tex]e^{4^x}=5[/tex]

[tex]\ln\left(e^{4^x}\right)=\ln(5)[/tex]

[tex]4^x\ln(e)=\ln(5)[/tex]

[tex]4^x=\ln(5)[/tex]

[tex]\log_4\left(4^x\right)=\log_4\left(\ln(5)\right)[/tex]

[tex]x\log_4(4)=\log_4\left(\ln(5)\right)[/tex]

[tex]\boxed{x=\log_4\left(\ln(5)\right)}\approx0.3433[/tex]

If you meant the second case,

[tex]e^{4x}-4=1[/tex]

[tex]e^{4x}=5[/tex]

[tex]\ln\left(e^{4x}\right)=\ln(5)[/tex]

[tex]4x\ln(e)=\ln(5)[/tex]

[tex]4x=\ln(5)[/tex]

[tex]\boxed{x=\dfrac{\ln(5)}4\approx0.4024}[/tex]