Respuesta :

Answer:

ab+bc+ca=0

Step-by-step explanation:

We are given:

[tex]x^a=y^b=z^c[/tex]

xyz=1

Separating equations:

[tex]x^a=z^c[/tex]

[tex]y^b=z^c[/tex]

Solving the first equation for x:

[tex]\displaystyle x=z^\frac{c}{a}[/tex]

Solving the second equation for y:

[tex]\displaystyle y=z^\frac{c}{b}[/tex]

Substituting in

xyz=1:

[tex]\displaystyle z^\frac{c}{a}z^\frac{c}{b}z=1[/tex]

Adding the exponents:

[tex]\displaystyle z^{\frac{c}{a}+\frac{c}{b}+1}=1[/tex]

Since [tex]1=z^0[/tex]:

[tex]\displaystyle z^{\frac{c}{a}+\frac{c}{b}+1}=z^0[/tex]

The base is z on both sides so we get rid of them:

[tex]\displaystyle \frac{c}{a}+\frac{c}{b}+1=0[/tex]

Multiplying by ab:

bc+ac+ab=0

Reordering:

ab+bc+ca=0