Respuesta :
Answer:
Engineering is a profoundly creative process. A most elegant description is that engineering is about design under constraint. The engineer designs devices, components, subsystems, and systems and, to create a successful design, in the sense that it leads directly or indirectly to an improvement in our quality of life, must work within the constraints provided by technical, economic, business, political, social, and ethical issues. Technology is the outcome of engineering; it is rare that science translates directly to technology, just as it is not true that engineering is just applied science. Historically, technological advances, such as the airplane, steam engine, and internal combustion engine, have occurred before the underlying science was developed to explain how they work. Yet, of course, when such explanations were forthcoming, they helped drive refinements that made the technology more valuable still.
Technological innovations occur when a need arises or an opportunity presents itself. They occur as a result of private initiative or government intervention. Most important for this study is that they are occurring at an astonishing pace, especially those in information and communications technology, which are most apparent to the public, and this has important implications for engineering practice and engineering education in the future. Totally unexpected scientific findings
Page 8
Suggested Citation:"1 Technological Context of Engineering Practice." National Academy of Engineering. 2004. The Engineer of 2020: Visions of Engineering in the New Century. Washington, DC: The National Academies Press. doi: 10.17226/10999.×
Add a note to your bookmark
can suggest new technologies as well, and hence any discussion of the future of engineering must ponder scientific breakthroughs that might occur along the way.
In his groundbreaking book The Structure of Scientific Revolutions, Thomas Kuhn (1970) helped us see that science advances through two quite different dynamics. Ordinary science fills in the details of a landscape that is largely known. Every once in a while the problems of the contemporary world view become so unworkable that reinventing the map is needed. For example, the recognition that continents moved slowly over the surface of the earth solved many problems that a model of a static planet made unsolvable. This recognition led to a reconceptualization and new perception of reality.
One of the questions our view of the world answers is how things are connected and put together. The familiar model is a building constructed of diverse components assembled in a fixed pattern. The other familiar model is a fluid, like a river, with a rapidly changing shape formed by local conditions. An emerging model of order is the network. In a universe of superstrings and soft boundaries for molecules, network-like connections among things may provide a useful new ordering principle. Networks have unique properties, such as self-organization, and sometimes huge multiplier effects of many connecting to many. Networks also have vulnerabilities, as demonstrated by the blackout in the northeastern United States in August 2003.
We are also seeing a new relationship between the macroscopic world we inhabit every day and the microscopic world at a molecular, atomic, and even subatomic level. Once we could describe events in our observable world by fairly simple mathematical rules, say the trajectory of a baseball hit out of a baseball park, but the very small was imprecise, uncertain, and statistical. Now new tools and mathematics enable us to enjoy a similar level of precision, certainty, and uniqueness even at the smallest imaginable scales. We have, for example, recently discovered how to encode data in the spin of an electron inside an atom—in other words, subatomic data storage (Awschalom et al., 2002).
Both the exquisite sensitivity of biological function to the precise sequencing of base pairs of DNA and the mathematics of chaos lead to a view that small actions matter in giving form to things and order to events. What we do actually matters to history. The future really is the result of choices made today. It is not merely the random concatenation of mechanically predetermined events or the statistical result of acci-
Page 9
Suggested Citation:"1 Technological Context of Engineering Practice." National Academy of Engineering. 2004. The Engineer of 2020: Visions of Engineering in the New Century. Washington, DC: The National Academies Press. doi: 10.17226/10999.×
Add a note to your bookmark
dents along the way. And while we are alike in many ways that define our common humanity, the path dependence of complex systems tells us that each of us is also unique.