Respuesta :

Space

Answer:

(6, 1)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

Algebra I

  • Solving systems of equations using substitution/elimination

Step-by-step explanation:

Step 1: Define Systems

3x - 5y = 13

x + 4y = 10

Step 2: Rewrite Systems

x + 4y = 10

  1. Subtract 4y on both sides:                    x = 10 - 4y

Step 3: Redefine Systems

3x - 5y = 13

x = 10 - 4y

Step 4: Solve for y

Substitution

  1. Substitute in x:                    3(10 - 4y) - 5y = 13
  2. Distribute 3:                         30 - 12y - 5y = 13
  3. Combine like terms:           30 - 17y = 13
  4. Isolate y terms:                   -17y = -17
  5. Isolate y:                              y = 1

Step 5: Solve for x

  1. Define equation:                    x + 4y = 10
  2. Substitute in y:                       x + 4(1) = 10
  3. Multiply:                                  x + 4 = 10
  4. Isolate x:                                 x = 6

Answer:

(6,1)    x=6 and y=1        

Step-by-step explanation:

EASY we can use Elimination or Substitution process

We are going to solve by

Elimination process

Subtract each other

(3x-5y=13)

(x+4y=10)

3x-5y=13;x+4y=10

To solve this multiply (x-4y=10) by 3 to get rid of the x

3x-12y=30

now u can subtract both

3x-12y=30 minus

3x-5y=13

17y=17

Divide both sides by 17

y=1

Now we have y lets plug it in to find x

x+4(1)=10

x+4=10

subtract 4 from both sides

x=6

x=6 and y=1