Respuesta :

Answer:

The next statements are are;

Statement                                                  [tex]{}[/tex]        Reason

Segment [tex]\overline {DC}[/tex] ≅ Segment [tex]\overline {AB}[/tex]                        [tex]{}[/tex]   CPCTC

[tex]\overline {AD}[/tex] ≅ [tex]\overline {BC}[/tex] and [tex]\overline {DC}[/tex] ≅ [tex]\overline {AB}[/tex], therefore;

ABCD is a parallelogram                    [tex]{}[/tex]               Parallelogram side theorem

Step-by-step explanation:

Statement                                                  [tex]{}[/tex]        Reason

Segment [tex]\overline {DC}[/tex] ≅ Segment [tex]\overline {AB}[/tex]  by Congruent Parts of Congruent Triangles are Congruent (CPCTC)

Given that [tex]\overline {AD}[/tex] ≅ [tex]\overline {BC}[/tex] and we have that [tex]\overline {DC}[/tex] ≅ [tex]\overline {AB}[/tex], we get;

ABCD is a parallelogram                    [tex]{}[/tex]               Parallelogram side theorem

The parallelogram side theorem states that a quadrilateral is a parallelogram if it has two pairs or sets of congruent opposite sides.