Respuesta :

Answer:

h = 15.13 cm

Step-by-step explanation:

Lateral Surface Area of a Cone

Given a right circular cone of base radius r and height h, the lateral surface area is given by:

[tex]A=\pi r\sqrt{r^2+h^2}[/tex]

We are given the lateral area of a funnel as A=236.64 square cm and the radius is r=4.75 cm. It's required to find the height of the cone. It can be calculated by solving for h.

Squaring:

[tex]A^2=\pi^2 r^2(r^2+h^2)[/tex]

Dividing by [tex]\pi r^2[/tex]

[tex]\displaystyle \frac{A^2}{\pi^2 r^2}=r^2+h^2[/tex]

Subtracting [tex]r^2[/tex]:

[tex]\displaystyle \frac{A^2}{\pi^2 r^2}-r^2=h^2[/tex]

Taking square root:

[tex]\displaystyle h=\sqrt{ \frac{A^2}{\pi^2 r^2}-r^2}[/tex]

Substituting the values:

[tex]\displaystyle h=\sqrt{ 251.472-22.5625}[/tex]

[tex]\displaystyle h=\sqrt{ 228.909}[/tex]

h = 15.13 cm