Find the values of w, x and y.

Answer:
w= 27.47 degree
x=9.99 cm
y=12.02 cm
Step-by-step explanation:
The value of w:
In a right-angled triangle [tex]\tan \theta = \frac {\text{Perpendicular}}{\text{Base}}[/tex]
[tex]\tan w = \frac {\text{Perpendicular}}{25+9}\;and \; \tan 63 = \frac {\text{Perpendicular}}{9}[/tex]
So, [tex]34 \tan w = 9\tan (63)[/tex]
[tex]\tan w = (9/34)\tan(63)=0.52 \\\\w=\tan^{-1}(0.52) \\\\[/tex]
w= 27.47 degree
The value of x:
In a right-angled triangle [tex]\sin \theta = \frac {\text{Perpendicular}}{\text{Hypotaneous}}[/tex]
sin (27) =x/22
x= 22sin(27)
x=9.99 cm
The value of y:
By using Pythagoras theorem,
[tex]y^2+y^2=17^2 \\\\2y^2 = 289 \\\\y^2 =289/2= 144.5 \\\\y=\sqrt {144.5} \\\\[/tex]
y=12.02 cm